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Ongoing digital transformation in the education sector has led to an increased focus on learning 

analytics (LA). LA collects and uses students’ data to gain insights about students’ learning and 

to guide interventions and feedback. Although LA holds tremendous promise for enhancing 

teaching and learning, there are persistent concerns about the privacy and ethical ramifications 

of collecting and using student data. One potential solution is the use of Synthetic Data 

Generators (SDGs) which can learn from real data to generate synthetic data that closely 

resembles real data. This paper examines the performance of existing SDGs with student data, 

as well as their capabilities for serving LA. A comparative study was conducted by applying 

different SDGs in Synthetic Data Vault to real-world student data. We report the efficiencies of 

different generators and the statistical similarities between synthetic and real data. We test how 

well SDGs imitate the real student data by fitting generated synthetic data into commonly-used 

LA models. We evaluate the utility of synthetic data by the alignment of LA outputs trained using 

synthetic data to the ground truth of student learning outcomes recorded in real data, as well as 

with outputs of LA models trained by real data. 
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Introduction 

Over the past few decades, rapid advancements in technology have brought about a digital 

transformation in our society (Zain, 2021). The education sector is no exception to this trend. 

The COVID-19 pandemic has further accelerated this process as the sudden shift to remote 

learning has forced educators to embrace technology, leading to the adoption of Learning 

Analytics (LA) at an unprecedented pace (Celik, Gedrimiene, Silvola, & Muukkonen, 2022). 

Moreover, recent developments in Artificial Intelligence (AI), such as ChatGPT (Radford, 

Narasimhan, Salimans, Sutskever, et al., 2018; Radford et al., 2019; Brown et al., 2020), have 

had a significant impact on both teachers and learners, increasing awareness about the 

potential of AI to revolutionise the way we teach and learn. As a result, there is growing interest 

in exploring how AI-powered tools can be integrated into education to enhance the learning 

experience and improve student outcomes (Kavitha & Lohani, 2019; Barrett et al., 2019). 

The collection and utilisation of student data lie at the heart of any LA system (Joksimovic et 
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al., 2022). However, this emphasis on data collection inevitably raises concerns about privacy 

and ethical implications. Privacy concerns in LA are largely associated with the extensive 

collection of personal information, including academic performance, behavioral patterns, and 

demographic data (Mutimukwe, Viberg, Oberg, & Cerratto Pargman, 2022). Many research 

studies and policies have emphasised the need to address these concerns as a crucial aspect 

of LA development (Pardo & Siemens, 2014; Drachsler & Greller, 2016; Tsai, Whitelock-

Wainwright, & Gašević, 2020). In addition, the use of student data in LA raises ethical questions 

regarding the potential exposure of students to untested or hypothesised conditions that may 

negatively impact their learning experience and outcomes (Prinsloo & Slade, 2017, 2016; 

Benvenuti & Mazzoni, 2020). Therefore, it is essential that the use of student data for research 

purposes follows established procedures for ethical approval and adheres to ethical guidelines 

to safeguard against any risks of harm or exploitation of students. 

Hence, Synthetic Data Generators (SDGs) that learn from real data to generate synthetic 

data that closely matches the statistical characteristics of the original data - can be viewed as a 

methodological innovation that addresses privacy and ethical concerns in LA research. 

Synthetic student data provides strong privacy guarantees and avoids ethical debates as it does 

not contain actual observations of students. However, the effectiveness of synthetic data in 

serving LA modelling remains an obstacle to its integration (Joksimovic et al., 2022). Research 

in synthetic data generation has gained momentum (El Emam, Mosquera, & Hoptroff, 2020), 

and open-source frameworks such as Synthetic Data Vault (SDV) (Patki, Wedge, & 

Veeramachaneni, 2016) provide user-friendly ways to generate synthetic data. Meanwhile, there 

is only a handful of studies with a particular focus on extolling the advantages of synthetic data 

(e.g., overcoming ethical barriers and benefiting data governance) (Berg, Mol, Kismihok, & 

Sclater, 2016a; Dorodchi, Al-Hossami, Benedict, & Demeter, 2019) and organising various use 

cases related to synthetic data in LA contents (Flanagan, Majumdar, & Ogata, 2022; Berg, Mol, 

Kismihok, & Sclater, 2016b). Less attention was paid to the technical aspects of SDGs (Vie, 

Rigaux, & Minn, 2022) or the application of state-of-the-art machine learning SDG technologies 

to enhance LA. 

In this paper, we examine existing SDGs from the broader community in terms of their 

performances with student data, as well as their capabilities in the LA domain. A comparative 

study is conducted by applying a set of different SDGs in SDV, an open-sourced synthetic data 

generation ecosystem of libraries, to real-world student data from an Australian university. We 

report the efficiencies of different generators and the qualities of generated synthetic datasets 

regarding their statistical properties against real data. Furthermore, we test how well SDGs can 

provide data utility for LA modelling by fitting generated synthetic datasets into commonly-used 

LA models. By aligning with the ground truth of student learning outcomes recorded in real data, 

we evaluate the performances of LA models trained by synthetic datasets as indicators of their 

utilities of serving LA models. 

Methodology and experiments 

As an initial study investigating the use of SDGs on student data for LA, we focused on 

generators suited for single-table data, which is commonly encountered in student data after 

feature engineering in LA. SDV offers the most extensive options of SDGs for single-table data 

that can handle various value types (including missing values) and allow constraints to be 

defined over columns to adhere to certain logical rules. The SDGs used in our study are as 
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follows: 

• GaussianCopula: GaussianCopula is a statistical model to measure the dependence 

structures between variables by comparing the joint distribution of the variables and their 

marginal distributions. It assumes variables are normally distributed after a certain 

transformation. Thus, GaussianCopula (Wan, Li, Guo, & Zhao, 2019) aims to understand 

relationships between variables in the real data and then re-construct them in synthetic 

data generation. 

• CTGAN: Conditional Tabular Generative Adversarial Network (GAN) (Xu, Skoularidou, 

Cuesta-Infante, & Veeramachaneni, 2019) uses a GAN architecture to generate synthetic 

tabular data based on certain conditions/constraints presented in the real data. GAN is a 

deep learning model used for generative modelling that consists of a generator network 

and a discriminator network trained in an adversarial manner. Thus, CTGAN can be 

expected to generate synthetic data that is similar to the real data. 

• CopulaGAN: It is a variation of the CTGAN that combines GaussianCopula with the 

CTGAN. With GaussianCopula, CopulaGAN gains the ability to capture the dependence 

structure between variables when learning real data. 

• TVAE: Variational Autoencoder (VAE) for Tabular data (Xu et al., 2019). VAE is another 

deep-learning model for generative modelling that consists of an encoder and a decoder. 

The encoder in TVAE maps tabular data to a low-dimensional latent space representation 

that follows a probability distribution, while the decoder generates/re-constructs synthetic 

data from the latent space. 

Student data 

For our analysis, we used anonymised student data for three mandatory IT courses (coded as 

ITF, NWF, and PBS) from a large public Australian university. For each course, we used 

enrolments from the 2015 to 2020 academic years making up the following sample sizes: PBS 

(1,835), NWF (1,873), and ITF (1,829). Each course record contains students’ demographic 

information, students’ engagements with courses and other related information which we 

capture in the Appendix. 

Experiment pipeline 

Figure 1 describes the pipeline of our experiments. We used four SDGs to generate synthetic 

student data of the same size for three courses. To ensure stable results, we repeated the 

process 100 times, 50 on a device with a dedicated Graphics Processing Unit (GPU) and 50 on 

a device without a GPU. This allowed us to examine the impact of GPU usage on the efficiency 

of SDGs.  
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Figure 1: Flowchart of experiment pipeline 

 

We first reviewed and pruned irrelevant columns (e.g., student IDs, columns with excessive 

missing values, etc.) from the synthetic datasets after generation. The Synthetic Data Metrics 

(SDMetrics) (MIT’s Data to AI Lab, 2016) was used to assess the extent to which synthetic data 

resembles real data in terms of statistical properties (i.e., Column Shapes and Column Pair 

Trends). Column Shapes and Column Pair Trends quantify how similar the distributions of real 

and synthetic data are in each column and whether the synthetic data capture trends between 

pairs of columns that are found in the real data, respectively. We averaged the two metrics to 

report an overall quality score. To evaluate the utilities of synthetic student data serving LA 

models, we repeatedly trained LA models (linear regression and classification tree) with 

generated synthetic data. These models solve classic tasks in LA (i.e., course grade and 

outcome prediction), and are the two most commonly used methods in LA due to simplicity and 

interpretability (Kabra & Bichkar, 2011; Gadhavi & Patel, 2017). We evaluated the utilities of 

synthetic student data by comparing predictions of LA models they served against ground truth 

(student learning outcomes recorded in real data). Additionally, we created benchmarks of LA 

model performances by training and testing models with entire real data and compared the 

performances of LA models trained with synthetic student data with benchmarks. Consistency 

was further evaluated by comparing predictions of LA models trained with synthetic data versus 

with real data. 

Results 

Efficiency of synthetic data generation 

We evaluated the efficiencies of SDGs by comparing the execution time for synthesising the 

same amount of student data (with and without GPU). From Figure 2, we observed that GPU 

usage substantially improves the implementation efficiencies of examined SDGs (i.e., 14 times 

faster for CTGAN and CopulaGAN, and 6 times faster for TVAE in our case) except for the 

GaussianCopula. Interestingly, results showed that GaussianCopula is the fastest SDG as 

evidenced by less than 1 second of execution time in both with and without GPU settings. Also, 

we observed that data from three courses required approximate execution time for all SDGs due 

to similar data size. 

Synthetic data quality evaluation 

Figure 2 visualises overall synthetic data qualities (i.e., to what extent synthetic data is 
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statistically similar to the real data). The GaussianCopula exhibited variable and inconsistent 

data quality despite its high efficiency in synthetic data generation. Results showed that its 

quality was comparable to GAN-based SDGs for the ITF course, superior to GAN-based SDGs 

for the NWF course, and was lowest for the PSF course. The data generated by TVAE have 

generally the highest quality across all three courses. We also observed the CTGAN and the 

CopulaGAN to be relatively similar in terms of the quality of the generated data. We find this not 

entirely surprising since the CopulaGAN is essentially a variation of the CTGAN. 

Figure 2: Comparison of efficiencies of SDGs (with and without GPU) and qualities of synthetic data 
generated (details can be found in Appendix) 

 

Utilities of synthetic data in serving LA models 

For our referring models, we chose linear regression and the decision-tree classifier. We 

evaluated the performance of the linear regression using RMSE, which measures the average 

squared difference between the actual and predicted grades. The performance of the classifier 

was evaluated by accuracy (i.e., the probability of correctly identifying those who pass or fail 

with the passing threshold set at 50%). We presented all benchmark performances achieved 

from real data in the side caption in Figure 3. 
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We now evaluate utilities of generated synthetic data in serving LA models (hereinafter 

referred to using the following nomenclature: SDG name + regressor or classifier) against 

ground truth. Additionally, we compare the utilities of synthetic data by comparing its predictive 

consistency with that of real data in the learning analytics models they are used for. 

Figure 3: Comparison of performances of LA models trained using synthetic data generated by SDGs 
(details can be found in Appendix) 

 

 

Boxplots depicted in Figure 3 display the distribution of specific metrics (i.e., RMSE for 

regressors and Accuracy for classifiers) indicating the performances of LA models. Starting with 

the regression models, interestingly, although the GaussianCopula appeared to generate 

synthetic data with unstable quality, the GaussianCopula regressors have the most similar 

predictive performances to the benchmark across all courses. The TVAE regressors are the 

second closest to the benchmark in students’ grade prediction despite that TVAE-generated 

synthetic data achieves the highest quality score. Meanwhile, both CopulaGAN and CTGAN 

regressors appeared to perform inferiorly with relatively higher RMSE. With regard to classifiers, 
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we observed that the TVAE classifiers outperformed others, as anticipated. GaussianCopula 

classifiers rank second across all datasets and again, the CopulaGAN and the CTGAN 

classifiers exhibited relatively poor performances at accurately determining students’ course 

success. 

To assess consistency between the predictions made by LA models that synthetic and real 

data served, we rely on Pearson Correlation (Hall, 2000) for linear regression and Cosine 

Similarity (Rahutomo, Kitasuka, & Aritsugi, 2012) for the classification. Results from 

GaussianCopula and TVAE models showed strong consistency with real LA model predictions 

regarding both regressor and classifier, as seen in Figure 4. These consistency trends also 

coincided with previous evaluations of model performance. The consistency evaluation of 

predictions from GAN-based regressor and classifier is fluctuating, as they have generated 

highly irrelevant predictions when compared to the predictions generated by the models using 

real data on multiple occasions. 

Discussion and conclusion 

Deciding on the best SDG overall is not a straightforward task. It is always a trade-off choice 

that might depend on particular use cases and practitioners’ preferences, such as the size of 

data, choice of LA models and whether to prioritise efficiency or quality, etc. The scope of the 

present comparative study is to test a range of existing SDGs, from statistical model-based to 

generative machine/deep learning model-based SDGs, on one of the most representative 

student data in order to provide guidelines and advice to researchers and practitioners in the LA 

community who wish to incorporate SDGs and use synthetic data in LA. 

Speaking of implementation efficiency, perhaps unsurprisingly, GPU can parallelise the 

computation and accelerate model training for GAN-based SDGs and TVAE due to their nature 

of being deep learning models, while the efficiency of the GaussianCopula solely relies on CPU 

performance, not affected by GPU usage. 

We have detailed all metrics for evaluating the statistical similarity of synthetic data against 

real data in the Appendix. The metrics measured how well SDGs restored value distribution 

(Column Shapes) and correlation between columns (Column Pair Trends) from real data to 

synthetic data. Our findings revealed that GaussianCopula was less effective in restoring 

distribution but better at capturing correlations, as expected from its model essentials. TVAE 

outperformed other SDGs in capturing both distribution and correlation. Acknowledged by the 

existing literature (Brock, Donahue, & Simonyan, 2018; Salimans et al., 2016), GAN-based 

SDGs introduced more randomness and diversity in data generation, leading to less stability, as 

indicated by the higher standard deviation in statistics and outliers in plots. 
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Figure 4: Prediction consistencies of LA models trained using synthetic data and real data (details can be 
found in the Appendix) 

 

 

In terms of providing utilities to LA models, both GaussianCopula and TVAE have ensured 

promising performances of the LA models they served, comparable to the benchmark. 

Additionally, they have made consistent predictions against those made by LA models trained 

by real data. Particularly, GaussianCopula has presented exceptional compatibility with linear 

regression, possibly due to its successful preservation of correlations from real data. Notably, 

GaussianCopula, despite achieving the lowest average quality score for the PSF course data, 

continued to serve LA models adequately. This suggests that statistical similarity does not 

necessarily equate to good utility. GAN-based SDGs displayed varying results across 

performance and consistency evaluation, although certain satisfactory results were observed. 

In summary, for beginners wishing to integrate SDGs into LA, we recommend 

GaussianCopula due to its efficiency and satisfactory performance in most use cases. TVAE is 

a more robust choice in all aspects, but its efficiency could be a concern without GPU. GAN-

based SDGs produce diverse samples and thus are suitable for synthesising large-scale data, 

but require careful hyperparameter tuning and testing to overcome instability. 
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In this study, we focused exclusively on SDGs suitable for single table data. SDV also offers 

SDGs that are suitable for relational and time-series data generators, which hold promise for 

future applications in LA. Particularly, synthetic relational raw student data affords greater 

flexibility for various feature engineering approaches, which have been shown to be critical in 

the construction of LA models (Romero & Ventura, 2020). Nonetheless, further investigations 

are necessary to explore the interplay between SDGs and feature engineering approaches, in 

addition to LA models. Moreover, while time-series data (Esling & Agon, 2012) in LA may not be 

as rigorous as that in other fields such as environmental science and economics, a considerable 

amount of student data is timestamped, rendering its potential for temporal analysis (Shirvani 

Boroujeni & Dillenbourg, 2019). 

With privacy and ethics in mind, we carried out this study to investigate (1) whether SDGs 

can replicate statistical properties of real data in generated synthetic data; and (2) whether 

SDGs can preserve the utility of real student data in generated synthetic data in terms of serving 

analytical models for common LA tasks. In conclusion, we posit that SDGs can be employed to 

generate synthetic data as a substitution or to complement real student data in serving LA. 
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Appendix 

Table 1: Summary of features in student data used in the present study. 

Category Features 

Demographics Age, gender, home language, citizenship status, disability status 

VLE (i.e., Moodle elements) 

Engagement 

Last login, assignment, quiz, course, forum, folder, resource, URL, 

page 

Categorised Engagement Informative, instructional, social 

Others Study period, SMS alerts 

Target Outcome 
Course grade (Regression), Course grade binarized at >= 50% 

(Classification) 

 

Table 2: Efficiencies of SDGs in terms of execution time 

Course 

Name 
SDG Name 

Average Time 

with GPU 

Time Std with 

GPU 

Average Time 

without GPU 

Time Std 

without GPU 

ITF 

GaussianCopula 0.379266 0.009703 0.363781 0.002283 

CTGAN 51.205874 0.488692 717.671241 1.010423 

CopulaGAN 52.349525 0.322569 740.189961 1.257696 

TVAE 26.567587 0.155131 150.216883 0.175728 

NWF 

GaussianCopula 0.378744 0.005302 0.374642 0.001772 

CTGAN 51.284514 0.344648 726.196453 1.019346 

CopulaGAN 51.851896 0.218032 722.975016 0.985052 

TVAE 26.818652 0.264630 154.370848 0.206071 

 

PSF 

GaussianCopula 0.442902 0.007439 0.422418 0.001841 

CTGAN 56.254287 0.368436 748.628781 1.538403 

CopulaGAN 55.671634 0.281993 738.258385 1.327826 

TVAE 29.625146 0.186811 155.960989 0.230422 
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Table 3: Quality metrics of generated synthetic data 

Course 

Name 
SDG Name 

Overall 

Quality 

Score 1 

Overall 

Quality 

Score Std 

Column 

Shapes2 

Column 

Shapes 

Std 

Column 

Pair 

Trends3 

Column 

Pair Trends 

Std 

ITF 

GaussianCopula 0.854563 0.002374 0.826392 0.002485 0.882733 0.002770 

CTGAN 0.851888 0.013275 0.860456 0.018318 0.843320 0.009590 

CopulaGAN 0.846878 0.011905 0.859163 0.016507 0.834592 0.008588 

TVAE 0.907142 0.008731 0.908748 0.008510 0.905535 0.009407 

NWF 

GaussianCopula 0.888991 0.001774 0.873979 0.002141 0.904003 0.001963 

CTGAN 0.854389 0.011405 0.871136 0.015554 0.837643 0.008303 

CopulaGAN 0.850116 0.010450 0.866315 0.013786 0.833917 0.008404 

TVAE 0.906967 0.007795 0.914336 0.007538 0.899598 0.009517 

PSF 

GaussianCopula 0.839833 0.001845 0.798342 0.002241 0.881324 0.002015 

CTGAN 0.860546 0.012687 0.865251 0.017195 0.855840 0.009514 

CopulaGAN 0.857511 0.010216 0.863863 0.013955 0.851160 0.008113 

TVAE 0.892634 0.008591 0.892601 0.009149 0.892668 0.008489 

1 Overall Quality Score averages the metrics of Column Shapes and Column Pair Trends. 

2 The Column Shapes metric describes how similar the distributions of real and synthetic data are in each column. It yields a 

separate score for every column. The final Column Shapes score is the average of all columns. 

3 Column Pair Trends metric quantifies whether the synthetic data capture trends between pairs of columns that were found in 

the real data. The trend between two columns describes how they vary in relation to each other, e.g., the correlation. It yields a 

score between every pair of columns and the final Column Pair Trends score averages them all. 
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Table 4: Performance of Linear Regression model trained by generated synthetic data and prediction 
consistency with outputs of LA models trained by real data using Pearson Correlation 

Course 

Name 
SDG Name 

Average 

RMSE 

RMSE 

Std 

Average Pearson 

Correlation 

Pearson 

Correlation Std 

ITF 

GaussianCopula 16.752500 0.106698 0.974609 0.005953 

CTGAN 24.328230 1.726677 0.362227 0.389788 

CopulaGAN 24.347140 2.466106 0.456765 0.355503 

TVAE 18.025770 0.377618 0.936392 0.012811 

NWF 

GaussianCopula 18.696228 0.132485 0.967597 0.006661 

CTGAN 26.953544 1.872785 0.325436 0.419433 

CopulaGAN 27.204519 2.424000 0.334115 0.438765 

TVAE 20.237349 0.536012 0.945317 0.012051 

PSF 

GaussianCopula 22.533960 0.133229 0.934538 0.007956 

CTGAN 29.923113 1.851817 0.125684 0.450658 

CopulaGAN 30.063285 2.205507 0.154611 0.434189 

TVAE 24.242295 0.460819 0.917711 0.011648 

Table 5: Performance of Decision Tree classifier trained by generated synthetic data and prediction 
consistency with outputs of LA models trained by real data using Cosine Similarity 

Course 

Name 
SDG Name 

Average 

Accuracy 

Accuracy 

Std 

Average Cosine 

Similarity 

Cosine 

Similarity Std 

ITF 

GaussianCopula 0.819546 0.025774 0.927522 0.024249 

CTGAN 0.685970 0.101079 0.838137 0.128448 

CopulaGAN 0.644385 0.139122 0.778096 0.185133 

TVAE 0.823242 0.016703 0.913753 0.017495 

NWF 

GaussianCopula 0.821698 0.013795 0.947091 0.015766 

CTGAN 0.702045 0.041142 0.892618 0.037656 

CopulaGAN 0.683310 0.081315 0.861428 0.124254 

TVAE 0.803673 0.015396 0.917131 0.015471 

PSF 

GaussianCopula 0.798441 0.034877 0.927274 0.029793 

CTGAN 0.682131 0.083757 0.838664 0.140985 

CopulaGAN 0.664954 0.094269 0.823905 0.119547 

TVAE 0.808016 0.020098 0.920111 0.017507 

 


