
 

2024 
Volume 4 
Article 28 

https://doi.org/10.59453/ll.v4.28 

  

This work is licensed under CC BY-ND 4.0. To view a copy of this license, visit 

http://creativecommons.org/licenses/by-nd/4.0/ 

If cheating is optimisation then assessment must not 

be pure: Effect tracking and assessment  

William Billingsley 

University of New England, Australia 

 

The emergence of generative AI has broadened the question of how to ensure academic 

integrity. Where, in the past, many tools sought to counter specific threats to integrity (for 

example, detecting plagiarism or outsourcing), we now need to consider integrity more 

fundamentally: What work can we be assured the student did? One way of viewing 

cheating is from the perspective of optimisation: producing a result without performing the 

work. This perspective creates an interesting parallel with computer programming. A 

programmer often wants their compiler to optimise their program, altering its instructions 

to make it run more efficiently, without affecting its observable behaviour. Some 

characteristics of programs make this easier or harder to do. For example, a function is 

said to be “pure” if it always produces the same outputs for the same inputs and has no 

other effects. If the result is known, then performing the function can be invisibly replaced 

by inserting its result. If, however, a function has an observable effect, then the work of 

performing the function cannot be optimised away. This paper explores academic 

integrity assurance through the lens of “effect types”. In functional languages, functions 

are often written in such a manner that the types of effects they have are explicit and 

tracked by the compiler. The paper likens this to tracking the types of academic integrity 

measures that are present in each assessment, how they compose across a course, and 

therefore what observable effects are present to assure each learning outcome. 
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Introduction 

In the last two years, generative artificial intelligence (GenAI) has prompted widespread 

reflection on higher education assessment. GenAI has been both a surprise and a long 

time coming. Historically, artificial intelligence (AI) has been interlinked with education and 

assessment for fifty years, as many of the early AI pioneers were also interested in 

human cognition (Doroudi, 2022). Nonetheless, the capabilities and ease of access of 

tools such as ChatGPT were a signal moment for academics and regulators to consider 

its implications, especially regarding academic integrity (Cotton et al., 2023). 

The impact of GenAI on assessment goes beyond the simple question of cheating. As 

workplaces adopt AI, the skills that students need to be taught are changing 

(Markauskaite et al., 2022). As students and educators interact more frequently with AI, 

their expectations on how assessment is delivered also change (Smolensky et al., 2023). 

Universities are adapting how they produce their material (Diwan et al., 2023), how they 

deliver feedback (Dai et al., 2023), and how they offer monitoring and support services 

throughout students’ studies. Academics are also predicting how social GenAI in 
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education may be improved – for example, GenAI conversations are currently isolated 

from your social context and each conversation has only a limited sense of your past 

conversations (Sharples, 2023). So, the questions of what universities assess, how, why, 

and when, are in flux. The need to assure that a student’s qualification accurately 

represents skills they have learnt, however, remains, even as the landscape of skills and 

assessment being assured becomes more complex. 

The question of ensuring authenticity is itself multi-faceted. Academics have explored 

questions of detection (Perkins, 2023), university policies and the guidance that is given 

to students and academics (Moorhouse et al., 2023; Luo, 2024), and the experiences of 

students who have been accused of misconduct using generative AI (Gorichanaz, 2023). 

Best practice advice on assessment design has typically been generated in workshops, 

consultations, and reviews (e.g., Lodge et al., 2023; Hsiao et al., 2023), so is usually 

descriptive rather than prescriptive.  

Most reports recommend approaches around assessment redesign and gathering 

evidence of learning, rather than relying on detection or current gaps in GenAI’s abilities. 

This makes sense, given the nature of GenAI evolution. In 2022, academics were 

publishing findings that GenAI could perform well on higher education assessments (e.g., 

Finnie-Ainsley et al., 2022); by March 2023, the developers of GPT-4 were reporting using 

its performance in human examinations as a quality measure in the AI’s own technical 

report (OpenAI: Achiam et al., 2023). We should expect this to continue – where AI is 

designed to assist with complex human tasks, the assessments that educators write to 

assess human skills will be an attractive training ground. Reports also recommend 

focusing authenticity efforts on the parts of assessment that most relate to degree 

learning outcomes (Lodge et al., 2023), and on means of ensuring meaningful student 

learning in assessment that may include AI, rather than a simplistic notion that students’ 

work without AI input is more original (Luo, 2024); in other words, a focus on what the 

student did, rather than what the AI might have done. 

Academic integrity assurance can carry a cost or time burden, for example, 

traditionally, the costs of proctoring or the time needed to conduct oral examinations. 

Institutions, therefore, should consider which assessments to assure as well as how to 

assure them. Australia has long used constructive alignment (Biggs, 1996) in curriculum 

design – essentially, aligning assessment tasks to subject learning outcomes, and subject 

learning outcomes to degree learning outcomes. So, Australian advice often focuses on 

whether there is sufficient assurance that a degree’s learning outcomes have been 

demonstrated. The regulator’s advice in this area (Lodge et al., 2023) takes a case study 

approach, using human review of curricula and assessment strategies to determine the 

level of risk.  

There are some examples of augmenting this with mapping: collecting the strategies 

used for evidencing learning in subjects or assessments and collating these across each 

degree to demonstrate to reviewers the methods that are being used (e.g., Billingsley, 

2022). However, this is currently only at a coarse level of detail, and it may be possible to 

produce finer-grained automated analysis. In the past, proposals (e.g., Veltri et al., 2015) 

have suggested using assessment weighting across curriculum maps to understand the 

relative weighting of different learning outcomes within a degree. This paper raises the 

question of how assessments and their evidence of authenticity could be modelled across 

a degree to understand where integrity risks exist and what evidence of learning may be 

collected. 

A modern degree is already, to an extent, a complex evaluable expression – albeit 
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spread across different systems. Rules and pre-requisite pathways are evaluated within 

the enrolment system. Assessment scores are recorded and combined within subjects’ 

gradebooks. A student’s journey can be considered as the composition of these rules 

across their subject choices. From a computer science perspective, then, the question of 

what evidence of learning will be accrued across a student’s subject choices can be 

related to the concept of effect tracking: analysing the observable effects a task has and 

the resources it requires, and how these combine as individual tasks to comprise a larger 

program. For example, in both an invigilated exam and in a student teacher’s practicum, 

the student is observed, and this would be considered an effect on the observer. 

Effect tracking 

Abstractly, academic misconduct could be considered as an attempt to produce a 

submission that is indistinguishable from an authentic submission, without performing the 

same work. Students’ motivations for engaging in misconduct vary but framing it as a 

deviation in process allows us to consider it from a computing perspective. To a compiler, 

minimising the work involved in a procedure to produce a result, without the changes 

being outwardly observable, is optimisation. Consequently, computing has long been 

interested in how and when programs and processes can be invisibly altered, and when 

they cannot be.  

In computing, an expression is “pure” or “referentially transparent” if performing the 

expression can be replaced by inserting its result without changing the observable 

behaviour of the program. For example, if we were to ask a program to sum an immutable 

list of numbers and then later to re-sum the same list of numbers, then the second time 

we might not need to redo the calculation as we could reuse the value we calculated 

previously. Or, if we had an oracle available (something external to our program that we 

can just ask for the result), we could replace performing the sum with its answer. 

However, if the summation task were to have a “side-effect”, such as printing out the 

numbers to the console as it went, then these optimisations could not be performed as 

they would change the observable behaviour of the program by printing the numbers out 

fewer times. This concept of referential transparency has been understood for a long time 

and functional programming languages have sought to maximise the use of pure 

functions since at least LISP in the 1960s (McCarthy, 1978). 

Gifford and Lucassen (1986) introduced the concept that the compiler could model the 

effects that are present in a program. Their scheme ascribed an “effect class” to each 

function, and tracked how they combine as expressions are composed into a program. 

This effectively meant that each expression would have two types: the type of data it 

evaluated to, and the class of effects that it involved.  

Later, Moggi (1991) proposed combining both sets of information into the return type of 

the expression, by representing the effects that are present in an expression using 

“monads” (a mathematical concept from category theory). For example, if we were to take 

our list summation, then without side-effects this function would receive a list of integers 

and return a single integer and therefore have a type such as: 

List[Int] ⇒ Int  

This would be deemed equivalent to another expression that takes a list of integers 

and produces the same result, including looking up a previously generated answer or 

asking an oracle. (This has a clear analogy with students submitting copied work or 

asking GenAI to produce an answer.) However, if the side-effect in our example – 
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outputting the numbers as it works – were expressed as part of the type system, its type 

would become  

List[Int] ⇒ IO[Int]  

and the expression would only be deemed equivalent to a process that printed the same 

output as well as returning the same answer. There are a wide range of effects 

programmers commonly seek to track; for example, access to outside systems which is 

important because those calls might fail or might never complete. The mathematical 

properties of a monad ensure that the effects are tracked as a program is composed from 

the functions it calls. For example, if a function calls a function that may fail, then the outer 

function may fail unless it handles the failure. A convention has evolved among 

programmers of calling an effect a “side-effect” if it is not represented in the type of the 

function, but just an “effect” if it is. 

Modelling the type of an expression has relevance to academic integrity. Many 

traditional attempts to combat plagiarism have relied on strategies such as randomising 

questions or the values within them (e.g., Brusilovsky & Partak, 2002) or ensuring that 

different students’ work takes different paths (Sakzad et al., 2024). However, 

randomisation alone cannot combat outsourcing to generative AI as it does not change 

the type signature the assessment represents. It changes the input to each student, or the 

procedure each student is asked to perform, but it remains a simple function from input to 

answer with no outwardly observable effects. To a compiler, asking an oracle (e.g., an AI) 

would be deemed equivalent. If we introduce an observable effect, for example by 

proctoring the task or by logging students’ actions as they work, the type signature 

changes and asking an AI would no longer be equivalent to performing the task. The 

observable effects of students’ work render it less amenable to optimisation. Those side-

effects can be considered the evidence of authenticity of work in the task. Some 

examples of observable effects are shown in Table 1. 

Table 1: An example typology of assessments and their side-effects 

Side effect Examples 

Observed work Proctored exams, assessed practicals 

External records Version histories, system interaction logs, logs of automated test runs on past 

revisions 

Human interaction Client meetings, oral examinations, facilitated group work 

 

If we are to track these observable effects (evidence of authenticity of student work) as 

tasks combine across the curriculum, then any scheme we use to model this must not 

become unwieldy. In computing, combining separate monads can become complex as 

programs grow. Consider, for example that to a compiler, Task[Maybe[Int]] (a task that will 

run and might produce an integer or nothing) is distinct from Maybe[Task[Int]] (a task that 

might or might not run but will produce an integer). The order of the types becomes 

significant, and this can make the types hard to work with. For simplicity, it may be better 

to use a single type to record effect information and annotate it with the kinds of effects 

that are present. This is conceptually similar to an effect-tracking scheme for computer 

programs proposed by Wadler and Thiemann (2003). In assessment, we can therefore 

propose annotating any assessment items that have observable side-effects. These side-
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effects may include observation by invigilators, but can also include the impact that 

students’ work has on the world: from children being taught in student-teacher practicums, 

to the continuous integration test run history of student work on software projects. Then, 

across any arbitrary course of study it is feasible to compose a description of what forms 

of evidence of learning may be produced. 

Co-effects 

As well as having effects, a program can also require resources, such as access to a data 

stream on which it will perform its computation, or memory requirements. Uustalu and 

Vene (2008) proposed tracking these using the mathematical dual of monads: comonads. 

Consequently, these context requirements are sometimes referred to as “co-effects”. 

More recently, Gaboardi et al. (2016) proposed an approach that combined effects and 

co-effects, so that the effects a program has and the resources it requires can be tracked 

and analysed together. Their proposal also allowed for finer-grained consideration of 

effects, as it was able to consider whether an effect might, will, or will not occur. 

Co-effects have their own natural parallel in assessment. Just as a project conducted 

by a student may produce certain effects as students work, they may also require certain 

resources to perform their task. For example, a project with an industry partner requires 

that partner. 

Comonads are also relevant because assessment is the dual of work. Thus far, we 

have considered the problem from the perspective of students’ work and the effects it may 

have. A system for understanding the risk present in a curriculum, however, would need 

to model the university’s assessment system rather than modelling the student. To a 

student, the impacts of their work on observers and the world are effects. To an 

assessment system, however, they should be considered on the input rather than the 

output side. Where are these effects observed and what is the impact on credentialling if 

they are not? Rather than model them as effects of the student's work, we would model 

them as co-effects of the assessment: the required observations and evidence of learning 

that must be seen.  

Conclusion 

From a computational perspective, it seems realistic to propose a model of how 

assessment strategies compose across the assessments within a subject and across the 

subject options available in a curriculum. To construct such a model, assessments would 

need to describe any observable effect that they have and how that evidence of learning 

is considered within its grading. An assessment scheme within a subject can be modelled 

as an expression that composes its individual assessment items. A degree can be 

modelled as an expression of its course rules and the pre-requisite pathways by which 

subjects compose into a learning pathway. In a similar manner to effect tracking in 

software, the observable evidence of students’ work can be composed across these 

expressions. 

An initial attempt to create such a model is underway, being worked on in a public 

GitHub repository.1 This provides a JavaScript API for users to describe degrees, 

subjects, assessments, and their academic integrity measures. It is based on earlier work 

that mapped academic integrity at subject-level (Billingsley, 2022), adapted to use a 

 
1 https://github.com/tweakedinfo/course-and-effect 
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comonad to model academic integrity at assessment level. From this model, we can 

derive interactive HTML views of how academic integrity measures, and the evidence of 

learning they produce, play out across curriculum pathways and learning outcomes.  

The software is an experiment in modelling. Different universities have different structures 

and terminology for how they organise their courses, which may be a barrier to adopting 

the tool. However, by modelling courses with code, we can explore which analytical views 

of academic integrity are helpful in reviewing risks to academic integrity in qualifications. 

Funding 

No funding was received for the conduct of this research. 

Disclosure statement 

The author reports no potential conflict of interest. 

Disclosure of the use of AI-assisted technologies during writing 

No AI-assisted technologies were used during the writing process. 

About the author 

William Billingsley is an associate professor in computer science at the University of New 

England, the coordinator of UNE’s undergraduate computing courses, and currently the 

Chair of the School Education Committee for UNE’s School of Science & Technology. He 

has a background as a software engineer and as a researcher in human-computer 

interaction. His research focuses on technology education and education technology, and 

particularly how to make online and distance education smarter, more social, and more 

authentic. 

ORCID: https://orcid.org/0000-0002-1720-9076 

References 

Biggs, J. (1996). Enhancing teaching through constructive alignment. Higher Education, 32(3), 
347–367. https://doi.org/10.1007/BF00138871 

Billingsley, W. (2022). Lightweight mapping of identify [sic] verification methods and secondary 
course aspects: “Swiss cheese” modelling. In S. Wilson, N. Arthars, D. Wardak, P. Yeoman, 
E. Kalman, & D. Y. T. Liu (Eds.), Reconnecting relationships through technology. Proceedings 
of the 39th international conference on innovation, practice and research in the use of 
educational technologies in tertiary education (ASCILITE 2022): (e22199). 
https://doi.org/10.14742/apubs.2022.199  

Brusilovsky, P., & Pathak, S. (2002). Assessing student programming knowledge with web-based 
dynamic parameterized quizzes. In P. Barker & S. Rebelsky (Eds.), ED-MEDIA 2002: World 
conference on educational multimedia, hypermedia & telecommunications (pp. 1548–1553). 
Association for the Advancement of Computing in Education. 
https://www.learntechlib.org/p/9952/ 

Cotton, D., Cotton, P., & Shipway, J. (2023). Chatting and cheating: Ensuring academic integrity in 
the era of ChatGPT. Innovations in Education and Teaching International, 61(2), 228–239, 
https://doi.org/10.1080/14703297.2023.2190148  

Dai, W., Lin, J., Li, T., Tsai, Y., Gasevic, D., & Chen, G. (2023). Can large language models 
provide feedback to students? A case study on ChatGPT. In M. Chang, N.-S. Chen, R. Kuo, 
G. Rudolph, D. G. Sampson, & A. Tlili (Eds.), 2023 IEEE international conference on 
advanced learning technologies (ICALT), (pp. 323–325). 
https://doig.org/10.1109/ICALT58122.2023.00100  

https://orcid.org/0000-0002-1720-9076
https://doi.org/10.1007/BF00138871
https://doi.org/10.14742/apubs.2022.199
https://www.learntechlib.org/p/9952/
https://doi.org/10.1080/14703297.2023.2190148
https://doig.org/10.1109/ICALT58122.2023.00100


EFFECT TRACKING AND ASSESSMENT 

7 

Diwan, C., Srinivasa, S., Suri, G., Agarwal, S., & Ram, P. (2023). AI-based learning content 
generation and learning pathway augmentation to increase learner engagement. Computers 
and Education: Artificial Intelligence, 4, 100110. https://doi.org/10.1016/j.caeai.2022.100110 

Doroudi, S. (2022). The intertwined histories of artificial intelligence and education. International 
Journal of Artificial Intelligence in Education, 33, 885–928. https://doi.org/10.1007/s40593-
022-00313-2 

Finnie-Ansley, J., Denny, P., Becker, B. A., Luxton-Reilly, A., & Prather, J. (2022). The robots are 
coming: Exploring the implications of OpenAI codex on introductory programming. In J. 
Sheard & P. Denny (Eds.) ACE ’22: Proceedings of the Australasian computing education 
conference (pp. 10–19). Association for Computing Machinery. 
https://doi.org/10.1145/3511861.3511863 

Gaboardi, M., Katsumata, S., Orchard, D., Breuvart, F., & Uustalu, T. (2016). Combining effects 
and coeffects via grading. In Proceedings of the 21st ACM SIGPLAN international conference 
on functional programming (ICFP 2016) (pp. 476–489). Association for Computing Machinery. 
https://doi.org/10.1145/2951913.2951939  

Gifford, D.K. & Lucassen, J.M. (1986). Integrating functional and imperative programming. In W. L. 
Scherlis, J. H. Williams, & R. P. Gabriel (Eds.), Proceedings of the 1986 ACM conference on 
LISP and functional programming (LFP '86) (pp. 28–38). Association for Computing 
Machinery. https://doi.org/10.1145/319838.319848 

Gorichanaz, T. (2023). Accused: How students respond to allegations of using ChatGPT on 
assessments. Learning: Research and Practice, 9(2), 183–196. 
https://doi.org/10.1080/23735082.2023.2254787 

Hsiao, Y., Klijn, N., & Chiu, M. (2023). Developing a framework to re-design writing assignment 
assessment for the era of Large Language Models, Learning: Research and Practice, 9(2), 
148–158. https://doi.org/10.1080/23735082.2023.2257234 

Lodge, J.M., Howard, S., & Bearman, M. (2023). Assessment reform for the age of artificial 
intelligence. Tertiary Education Quality and Standards Agency. 

Luo, J. (2024). A critical review of GenAI policies in higher education assessment: A call to 
reconsider the “originality” of students’ work. Assessment & Evaluation in Higher Education, 
49(5), 651–664. https://doi.org/10.1080/02602938.2024.2309963  

Markauskaite, L., Marrone, R., Poquet, O., Knight, S., Martinez-Maldonado, R., Howard, S., 
Tondeur, J., De Laat, M., Shum, S. B., Gašević, D., & Siemens, G. (2022). Rethinking the 
entwinement between artificial intelligence and human learning: What capabilities do learners 
need for a world with AI? Computers and Education: Artificial Intelligence, 3, 100056. 
https://doi.org/10.1016/j.caeai.2022.100056  

McCarthy, J. (1978). History of LISP. In R. L. Wexelblat (Ed.), History of programming languages 
(pp. 173–185). Association for Computing Machinery. https://doi.org/10.1145/800025.1198360 

Moggi, E. (1991). Notions of computation and monads. Information and Computation, 93(1), 55–
92. https://doi.org/10.1016/0890-5401(91)90052-4  

Moorhouse, B., Yeo, M., & Wan, Y. (2023). Generative AI tools and assessment: Guidelines of the 
world's top-ranking universities. Computers and Education Open, 5, 100151. 
https://doi.org/10.1016/j.caeo.2023.100151 

OpenAI, Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., Almeida, D. 
Altenschmidt, J., Altman, S., Anadkat, S., Avila, R., Babuschkin, I., Balaji, S., Balcom, V., 
Baltescu, P., Bao, H., Bavarian, M., Belgum, J., … Zoph, B. (2023). GPT-4 technical report. 
arXiv preprint arXiv:2303.08774. https://doi.org/10.48550/arXiv.2303.08774 

Perkins, M. (2023). Academic Integrity considerations of AI Large Language Models in the 
pandemic era: ChatGPT and beyond. Journal of University Teaching & Learning Practice, 
20(2). https://doi.org/10.53761/1.20.02.07 

Sakzad, A., Paul, D., Sheard, J., Brankovic, L., Skerritt, M. P., Li, N., Minagar, S., Simon, & 
Billingsley, W. (2024). Diverging assessments: What, why, and experiences. In Proceedings 
of the 55th ACM technical symposium on computer science education (SIGCSE 2024) (pp. 
1161–1167). Association for Computing Machinery.  
https://doi.org/10.1145/3626252.3630832  

Sharples, M. (2023). Towards social generative AI for education: theory, practices and ethics. 

https://doi.org/10.1016/j.caeai.2022.100110
https://doi.org/10.1007/s40593-022-00313-2
https://doi.org/10.1007/s40593-022-00313-2
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/2951913.2951939
https://doi.org/10.1145/319838.319848
https://doi.org/10.1080/23735082.2023.2254787
https://doi.org/10.1080/23735082.2023.2257234
https://doi.org/10.1080/02602938.2024.2309963
https://doi.org/10.1016/j.caeai.2022.100056
https://doi.org/10.1145/800025.1198360
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/j.caeo.2023.100151
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.53761/1.20.02.07
https://doi.org/10.1145/3626252.3630832


BILLINGSLEY 

8 

Learning: Research and Practice, 9(2), 159–167.  
https://doi.org/10.1080/23735082.2023.2261131  

Smolansky, A., Cram, A., Raduescu, C., Zeivots, S., Huber, E. & Kizilcec, R. (2023). Educator and 
student perspectives on the impact of generative AI on assessments in higher education. In D. 
Spikol (Ed.), Proceedings of the tenth ACM conference on learning @ scale (L@S '23) (pp. 
378–382). Association for Computing Machinery. https://doi.org/10.1145/3573051.3596191 

Uustalu, T. & Vene, V. (2008). Comonadic notions of computation. Electronic Notes in Theoretical 
Computer Science, 203(5), 263–284. https://doi.org/10.1016/j.entcs.2008.05.029 

Veltri, N.F., Webb, H.W., Matveev, A.G., & Zapatero, E.G. (2015). Curriculum mapping as a tool for 
continuous improvement of IS curriculum. Journal of Information Systems Education, 22(1), 
31–42. https://aisel.aisnet.org/jise/vol22/iss1/4  

Wadler, P. & Thiemann, P. (2003). The marriage of effects and monads. ACM Transactions on 
Computational Logic, 4(1), 1–32. https://doi.org/10.1145/601775.601776 

https://doi.org/10.1080/23735082.2023.2261131
https://doi.org/10.1145/3573051.3596191
https://doi.org/10.1016/j.entcs.2008.05.029
https://aisel.aisnet.org/jise/vol22/iss1/4
https://doi.org/10.1145/601775.601776

